# Economic Comparison of Renewable Sources for Vehicular Hydrogen in 2040

Duane B. Myers\*

Greg D. Ariff

Brian D. James

Reed C. Kuhn



<sup>\*</sup> Corresponding author: duane\_myers@directedtechnologies.com

## **Project Scope**

 The Challenge: How to deliver 10 quads of H<sub>2</sub> from renewable sources in 2030-2050 for the U.S.

transportation sector, considering

- Resource availability
- Demand
- Cost
- Distribution pathways

10 quads H<sub>2</sub> ~ light-duty U.S. fleet in 2030 if converted to fuel cell vehicles





### Relevance to DOE R&D Plan

- Provides insight about a hypothetical hydrogen infrastructure for vehicles, with the hydrogen supplied from predominantly domestic resources
- Identifies cost (i.e., technical) barriers that must be overcome to achieve high utilization of renewable resources for hydrogen production



## Calculation of H<sub>2</sub> Demand Distribution

- Calculated per capita gasoline energy use from data in chart
- Estimated population in each state for 2040 (based on Census Bureau projections)
- Estimated fraction of national fuel consumption for each state in 2040
- Allocated the 10 quads of H<sub>2</sub> proportional to the 2040 fractional fuel consumption



Source: EIA (gasoline usage), Census Bureau (population)



## Renewable Resources Available for H<sub>2</sub>

- Biomass availability from ORNL stateby-state analyses and EPA MSW/landfill data. (Includes dedicated energy crops, agricultural residues, wood wastes, MSW, landfill gas, and livestock manure)
- State wind totals from EPRI/DOE, state class breakdown from NREL wind map (Classes 4, 5, and 6 only)
- Solar state-by-state from 10% of BLM land with >6 kWh/m²-day (annual average insolation)
- Geothermal from Geothermal Energy Association report
- Nuclear was explicitly excluded

|            | H₂ Potential<br>in 2040<br>Quads/year |
|------------|---------------------------------------|
| Biomass    | 2.7                                   |
| Wind       | 22.9                                  |
| PV Solar   | 5.9                                   |
| Geothermal | 0.4                                   |
| Total      | 31.9                                  |



## Biomass Cost Assumptions 115 m.t. H<sub>2</sub>/day

| Hydrogen yield                        | 70 kg/m.t. biomass*   |
|---------------------------------------|-----------------------|
| Plant Capital Cost                    | \$117.3 million       |
| Capacity factor                       | 85%                   |
| On-stream factor                      | 95%                   |
| Plant lifetime/payback period         | 25 years              |
| Cost of capital                       | 10.8%                 |
| Biomass cost                          | \$44/m.t.             |
| Annual operating and maintenance      | 3% of initial capital |
| Insurance and taxes                   | 1% of initial capital |
| Operator labor (12 @ 12<br>hrs/shift) | \$40/hour (loaded)    |
| Corporate overhead                    | 15% of revenues       |

<sup>\*58</sup> kg/m.t. for MSW



| Feedstock Cost         |             |
|------------------------|-------------|
| Energy crops \$44/m.t. |             |
| Wood & Ag Waste        | \$40/m.t.   |
| Livestock Manure       | \$22/m.t.   |
| MSW                    | \$22/m.t.   |
| Landfill gas           | \$1.64/Kscf |

| Cost of H <sub>2</sub> at Plant (\$/kg) |       |
|-----------------------------------------|-------|
| Energy crops                            | 1.75  |
| Wood & Ag Waste                         | 1.68  |
| Livestock Manure                        | 1.32  |
| MSW                                     | 1.45  |
| Landfill gas                            | 1.98* |

<sup>\*</sup> Delivered

## Wind Turbine Cost Assumptions 50 MW peak, Classes 4, 5, and 6

| Plant Capital Cost (\$648/kW <sub>peak</sub> ) | \$32.4 million        |
|------------------------------------------------|-----------------------|
| On-stream factor                               | 98%                   |
| Plant lifetime/payback period                  | 25 years              |
| Land lease rate                                | 2.5% of revenue       |
| Cost of capital                                | 10.8%                 |
| Annual fixed O&M                               | 2% of initial capital |
| Annual variable O&M                            | \$0.005/kWh           |
| Operator labor (3 @ 12 hrs/shift)              | \$40/hour (loaded)    |
| Corporate overhead                             | 15% of revenue        |

| Capacity Factor |       |
|-----------------|-------|
| Class 4         | 38.3% |
| Class 5         | 41.4% |
| Class 6         | 48.7% |

|         | COE<br>(¢/kWh) |
|---------|----------------|
| Class 4 | 4.7            |
| Class 5 | 4.4            |
| Class 6 | 3.8            |



## Forecourt Electrolysis Cost Assumptions

| Plant Capital Cost (\$300/kW <sub>e</sub> ) | \$510,000               |
|---------------------------------------------|-------------------------|
| Capacity factor                             | 69%                     |
| Plant lifetime/payback period               | 10 years                |
| Cost of capital                             | 10.8%                   |
| Annual fixed O&M                            | 2.5% of initial capital |
| Water Cost                                  | \$2/1000 gal            |
| Operator labor (1 @ 12 hrs/shift)           | \$20/hour (loaded)      |
| Corporate overhead                          | 15% of revenue          |

Electrolysis Cost \$1.30/kg H<sub>2</sub>



## Transmission and Distribution Cost Assumptions

### Hydrogen Pipeline

- Interstate: 40% higher (energy basis) than recent natural gas pipeline construction ⇒ \$0.024/kg H<sub>2</sub>-100 miles
- Local: 40% higher (energy basis) than markup on commercial natural gas from city gate price
- Electricity ⇒ \$0.00178/kWh-100 miles
- · Compression, forecourt storage, dispensing
  - 920 kg H<sub>2</sub>/day capacity
  - 7,000 psi storage, dispense to 5,000 psi
  - **-** \$470,000



## H<sub>2</sub> Pathways and Cost Factors

- All pathways deliver 5,000 psi gas to the vehicle (7,000 psi storage for fast fill)
- Cost factors were calculated from capital and operating costs using discounted cash flow method (8-11% cost of capital, 10-25 year payback)
- \* Only the lowest cost pathway for each resource was selected
  - Uneconomical pathways: liquid H<sub>2</sub> transport, pyrolysis oil, centralized electrolysis
- Cost of H<sub>2</sub> calculated from component factors

$$C_{H2} = \frac{1}{\eta_e (1 - l_T)} (C_G + C_T D) + C_E + C_{CSD}$$

$$C_{H2} = C_G + C_{P-L} + C_{P-D}D + C_{CSD}$$



## Two Categories of Hydrogen Pathways





## Cost of Hydrogen

(excluding sales taxes and dispensing markup)

#### Electrolysis Methods



#### Gasification/Reformation Methods





## H<sub>2</sub> Distribution Simulation

- Calculate cost of H<sub>2</sub> from each state to each state for each resource (48 contiguous states)
- States purchase H<sub>2</sub> in 0.0001 quad increments over multiple rounds until needs are met
- Lowest cost resources are used first
- Result ~ lowest cost for U.S.





## Resource Usage and Model Cost of H<sub>2</sub>

|              | Potential<br>(quads/year) | Predicted<br>Usage<br>(quads/year) |
|--------------|---------------------------|------------------------------------|
| Wind Class 4 | 18.1                      | 5.3 [29%]                          |
| Wind Class 5 | 3.1                       | 0.48 [15%]                         |
| Wind Class 6 | 1.7                       | 0.98 [58%]                         |
| Geothermal   | 0.43                      | 0.43 [100%]                        |
| Biomass      | 2.7                       | 2.7 [100%]                         |
| PV Solar     | 5.9                       | 0 [0%]                             |

NOTE: In general, cheapest feedstocks are used first (Biomass over Wind over Solar). Classes 5 and 6 wind are not fully utilized because of high transmission costs from remote locations.



Average Cost of Hydrogen (delivered): \$3.98/kg

[\$33.24/GJ, \$35.04/10<sup>6</sup> Btu]



## Delivered H<sub>2</sub> Cost by State

Color represents average statewide cost of H<sub>2</sub> without dispensing markup or sales taxes.





## Example States: Resources Used



## Example States: H<sub>2</sub> Cost





## Interesting Aside: Electrolysis is an Uneconomical Use of Wind and Geothermal Electricity

- Electricity cost from wind/geothermal ≈ electricity cost from NG turbine
- H<sub>2</sub> cost from wind/geothermal ~85% more than H<sub>2</sub> cost from NG SR

:. Natural gas  $\rightarrow$   $H_2$ , wind/geothermal  $\rightarrow$  electricity is more efficient & economical than vice-versa



TECHNOLOGIES .~

### Conclusions

- 10 quads of H<sub>2</sub> from renewable sources for transportation uses is technically achievable
- Electrolysis is significantly more expensive than biomass gasification
- Relatively abundant wind resources make solar a non-factor
- Significant wind resources are "stranded" due to cost of transmission
- Alternative production and distribution methods may be used, but not on the national scale



## **Project Timeline**

The work in the past year has been for Task 3 of a three task project.

| Task | Title                                                                                                     | Status                                        |
|------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1    | Distributed Hydrogen Fueling Systems<br>Analysis                                                          | Complete. Report published October 2000.      |
| 2    | Cost and Performance of Stationary Hydrogen Fueling Appliances                                            | Complete. Report published April 2002.        |
| 3    | Hydrogen from Renewable Energy<br>Sources: Pathway to 10 Quads For<br>Transportation Uses in 2030 to 2050 | Draft Report issued for review February 2003. |



### Collaborations

- Discussed capital cost projections for solar electricity with BP Solar
- Presented results at the 14<sup>th</sup> Annual U.S. Hydrogen Conference (March 2003, Washington, D.C.)
- Draft Report submitted for review to
  - DOE H2A Working Group
  - NREL



## Acknowledgements

 This work was funded by the DOE EERE Hydrogen, Fuel Cells, and Infrastructure Technologies Program

 Dr. Sig Gronich, Technology Validation Manager

